Spark运行模式

Spark

Spark 运行模式

Spark 安装地址

  1. 官网地址

  2. 文档查看地址

  3. 下载地址

集群角色

  1. Master 和 Worker(若用Yarn,则未必会有)

(1)Master

Spark 特有资源调度系统的 Leader。掌管着整个集群的资源信息,类似于 Yarn 框架中的 ResourceManager,主要功能:

1)监听 Worker,看 Worker 是否正常工作;

2)Master 对 Worker、Application 等的管理(接收 Worker 的注册并管理所有的Worker,接收 Client 提交的 Application,调度等待的 Application 并向Worker 提交)。

(2)Worker

Spark 特有资源调度系统的 Slave,有多个。每个 Slave 掌管着所在节点的资源信息,类似于 Yarn 框架中的 NodeManager,主要功能:

1)通过 RegisterWorker 注册到 Master;

2)定时发送心跳给 Master;

3)根据 Master 发送的 Application 配置进程环境,并启动 ExecutorBackend(执行 Task 所需的临时进程)

  1. Driver和Executor

(1)Driver(驱动器)——管理

Spark 的驱动器是执行开发程序中的 main 方法的线程。

它负责开发人员编写的用来创建SparkContext、创建RDD,以及进行RDD的转化操作和行动操作代码的执行。如果你是用Spark Shell,那么当你启动Spark shell的时候,系统后台自启了一个Spark驱动器程序,就是在Spark shell中预加载的一个叫作 sc 的SparkContext对象。如果驱动器程序终止,那么Spark应用也就结束了。主要负责:

1)将用户程序转化为作业(Job);

2)在Executor之间调度任务(Task);

3)跟踪Executor的执行情况;通过UI展示查询运行情况。

(2)Executor(执行器)——计算

Spark Executor是一个工作节点,负责在 Spark 作业中运行任务,任务间相互独立。Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。主要负责:

1)运行组成 Spark 应用的任务,并将状态信息返回给驱动器程序;

2)通过自身的块管理器(Block Manager)为用户程序中要求缓存的RDD提供内存式存储。RDD是直接缓存在Executor内的,因此任务可以在运行时充分利用缓存数据加速运算。

Local 模式

概述

Local模式就是运行在一台计算机上的模式,通常就是用于在本机上练手和测试。它可以通过以下集中方式设置Master。

local: 所有计算都运行在一个线程当中,没有任何并行计算,通常我们在本机执行一些测试代码,或者练手,就用这种模式;

local[K]: 指定使用几个线程来运行计算,比如local[4]就是运行4个Worker线程。通常我们的Cpu有几个Core,就指定几个线程,最大化利用Cpu的计算能力;

local[*]: 这种模式直接帮你按照Cpu最多Cores来设置线程数了。

安装使用

1)上传并解压spark 安装包

[user_test@hadoop102 sorfware]$ tar -zxvf spark-2.1.1-binhadoop2.7.tgz -C /opt/module/

# 改名方便以后操作
[user_test@hadoop102 module]$ mv spark-2.1.1-bin-hadoop2.7 spark

2)官方求PI(圆周率)案例

[user_test@hadoop102 spark]$ bin/spark-submit --class org.apache.spark.examples.SparkPi --executor-memory 1G --total-executor-cores 2 ./examples/jars/spark-examples_2.11-2.1.1.jar 100

前面带”–”的参数,是可有可无的,可以互换位置的。

(1)基本语法

bin/spark-submit \
--class 
--master  \
--deploy-mode  \
--conf = \
... # other options
 \

(2)参数说明:

–master:指定Master 的地址,默认为Local

–class: 你的应用的启动类你的应用的启动类 (如如 org.apache.spark.examples.SparkPi)

–deploy-mode: 是否发布你的驱动到是否发布你的驱动到worker节点节点(cluster) 或者作为一个本地客户端或者作为一个本地客户端 (client) (default: client)*

–conf: 任意的任意的Spark配置属性配置属性,, 格式格式key=value. 如果值包含空格如果值包含空格,,可以加引号可以加引号“key=value”

application-jar: 打包好的应用打包好的应用jar,包含依赖包含依赖. 这个这个URL在集群中全局可见。在集群中全局可见。 比如比如hdfs:// 共享存储系统,共享存储系统, 如果是如果是 file:// path,, 那么所有的节点的那么所有的节点的path都包含同样的都包含同样的jar

application-arguments: 传给传给main()方法的参数方法的参数

–executor-memory 1G 指定每个指定每个executor可用内存为可用内存为1G

–total-executor-cores 2 指定每个指定每个executor使用的使用的cup核数为核数为2个个

3)结果展示

4)准备文件

[user_test@hadoop102 spark]$ mkdir input

在input下创建2个文件1.txt和2.txt,并输入以下内容

[1.txt]

Hello World
Hello Scala

[2.txt]

Hello BigData
Hello Spark

5)启动spark-shell

[user_test@hadoop102 spark]$ bin/spark-shell 

出现以下界面就说明环境成功了

开启另一个窗口

[user_test@hadoop102 spark]$ jps 
——>
3627 SparkSubmit
4047 Jps

可登录 http://hadoop102:4040 (hadoop102:4040) 查看程序运行,其中地址在3.png中可以看到

6)运行WordCount程序

分析

scala> sc.textFile("input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
——>
res2: Array[(String, Int)] = Array((Hello,4), (World,1), (Scala,1), (BigData,1), (Spark,1))

可登录hadoop102:4040查看程序运行

提交流程提交流程

1)提交任务分析:

Spark通用运行简易流程

重要角色:

Driver(驱动器)

Spark 的驱动器是执行开发程序中的main 方法的进程。它负责开发人员编写的用来创建SparkContext、创建RDD,以及进行RDD 的转化操作和行动操作代码的执行。如果你是用spark shell,那么当你启动Spark shell 的时候,系统后台自启了一个Spark 驱动器程序,就是在Spark shell 中预加载的一个叫作 sc 的SparkContext 对象。如果驱动器程序终止,那么Spark 应用也就结束了。主要负责:

1)把用户程序转为任务

2)跟踪Executor 的运行状况

3)为执行器节点调度任务

4)UI 展示应用运行状况

Executor(执行器)

Spark Executor 是一个工作进程,负责在 Spark 作业中运行任务,任务间相互独立。Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor 节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor 节点上继续运行。主要负责:

1)负责运行组成 Spark 应用的任务,并将结果返回给驱动器进程;

2)通过自身的块管理器(Block Manager)为用户程序中要求缓存的RDD 提供内存式存储。RDD 是直接缓存在Executor 进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

数据流程

textFile(“input”):读取本地文件input 文件夹数据(按行读取);

flatMap(_.split(“ “)):压平操作,按照空格分割符将一行数据映射成一个个单词;

map((_,1)):对每一个元素操作,将单词映射为元组;

reduceByKey(+):按照key 将值进行聚合,相加;

collect:将数据收集到Driver 端展示。

WordCount案例分析

Standalone 模式

只用spark独立部署,不用其他的(资源调度也用spark,那么就没有RM和NM,相应替换成了master和worker)

概述

构建一个由Master+Slave 构成的Spark 集群,Spark 运行在集群中。

Master <——> ResourceManager
Worker <——> NodeManager

安装使用

1)进入spark 安装目录下的conf 文件夹

[user_test@hadoop102 module]$ cd spark/conf/

2)修改配置文件名称

[user_test@hadoop102 conf]$ mv slaves.template slaves

# 若以下已经修改则不用重复修改
[user_test@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh

3)修改slave 文件,添加work 节点:

[user_test@hadoop102 conf]$ vim slaves

添加以下内容

hadoop102
hadoop103
hadoop104

4)修改spark-env.sh 文件,添加如下配置:

[user_test@hadoop102 conf]$ vim spark-env.sh

写入以下内容

SPARK_MASTER_HOST=hadoop102
SPARK_MASTER_PORT=7077

5)分发spark 包

[user_test@hadoop102 module]$ xsync spark/

6)启动

[user_test@hadoop102 spark]$ sbin/start-all.sh

可执行jps来进行查看

网页查看:

hadoop102:8080

注意:如果遇到 “JAVA_HOME not set” 异常 可以在 sbin目录下的 spark-config.sh 文件中加入如下配置:

export JAVA_HOME=XXXX

其中JAVA_HOME可以通过如下命令获得

[user_test@hadoop102 spark]$ echo $JAVA_HOME

7)官方求 PI案例

[user_test@hadoop102 spark]$ bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://hadoop102:7077 --executor-memory 1G --total-executor-cores 2 ./examples/jars/spark-examples_2.11-2.1.1.jar 100

8)启动 spark shell

/opt/module/spark/bin/spark-shell --master spark://hadoop 102:7077 --executor-memory 1g --total-executor-cores 2

参数:–master spark://hadoop102:7077指定要连接的集群的 master

执行WordCount程序

scala> sc.textFile("input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
——>
res2: Array[(String, Int)] = Array((Hello,4), (World,1), (Scala,1), (BigData,1), (Spark,1))

JobHistoryServer配置

1)修改 spark-default.conf.template名称

[user_test@hadoop102 conf]$ mv spark-defaults.conf.template spark-defaults.conf

2)修改 spark-default.conf文件,开启 Log

[user_test@hadoop102 conf]$ vim spark-defaults.conf

修改以下内容

    spark.eventLog.enabled    true 
    spark.eventLog.dir    hdfs://hadoop102:9000/directory 

注:HDFS 上的目录需要提前存在。

3)修改 spark-env.sh 文件,添加如下配置:

[user_test@hadoop102 conf]$ vim spark-env.sh 
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080  
-Dspark.history.retainedApplications=30  
-Dspark.history.fs.logDirectory=hdfs://hadoop102:9000/directory" 

参数描述:

spark.eventLog.dir:Application 在运行过程中所有的信息均记录在该属性指定的路径下

spark.history.ui.port=18080 WEBUI 访问的端口号为 18080

spark.history.fs.logDirectory=hdfs://hadoop102:9000/directory 配置了该属性后,在 start-history-server.sh 时就无需再显式的指定路径,Spark History Server 页面只展示该指定路径下的信息

spark.history.retainedApplications=30 指定保存 Application 历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

4)分发配置文件

[user_test@hadoop102 conf]$ xsync spark-defaults.conf 
[user_test@hadoop102 conf]$ xsync spark-env.sh 

5)启动历史服务

[user_test@hadoop102 spark]$ sbin/start-history-server.sh 

6)再次执行任务

[user_test@hadoop102 spark]$ bin/spark-submit \ 
--class org.apache.spark.examples.SparkPi \ 
--master spark://hadoop102:7077 \ 
--executor-memory 1G \ 
--total-executor-cores 2 \ 
./examples/jars/spark-examples_2.11-2.1.1.jar \ 
100 

7)网页查看历史服务

hadoop102:18080

Yarn 模式

概述

Spark 客户端直接连接Yarn,不需要额外构建Spark 集群。有yarnclient和yarn-cluster 两种模式,主要区别在于:Driver 程序的运行节点。

yarn-client:Driver 程序运行在客户端,适用于交互、调试,希望立即看到app 的输出

yarn-cluster:Driver 程序运行在由RM(ResourceManager)启动的AP(APPMaster)适用于生产环境。

更通俗的一幅画

安装使用

1)修改hadoop 配置文件yarn-site.xml,添加如下内容:

[user_test@hadoop102 hadoop]$ vim yarn-site.xml

<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,
则直接将其杀掉,默认是true -->
<property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,
则直接将其杀掉,默认是true -->
<property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>

2)修改 spark-env.sh,添加如下配置

[user_test@hadoop102 conf]$ vim spark env.sh
    YARN_CONF_DIR= DIR=/opt/module/hadoop-2.7.2/etc/hadoop

注:在添加以上内容时,要把之前Standalone模式下的配置注释掉,即:

# SPARK_MASTER_HOST=hadoop102
# SPARK_MASTER_PORT=7077

spark本地运行运行是不需要任何配置的,现在是要跟yarn结合所以要加上配置。其中上面的 /opt/module/hadoop-2.7.2 就是我们 yarn 的地址(注意自己的修改)

3)分发配置文件

[user_test@hadoop102 conf]$ xsync /opt/module/hadoop-2.7.2/etc/hadoop/yarn-site.xml
[user_test@hadoop102 module]$ xsync spark

这里需要分发一下spark,使集群上没个机器都有,不然后面会很麻烦。

4)执行一个程序

[user_test@hadoop102 spark]$ bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode client ./examples/jars/spark-examples_2.11-2.1.1.jar 100

注意:在提交任务之前需启动HDFS以及 YARN集群;ResourceManager在哪,就在哪执行程序。

日志查看

1)修改配置文件 spark-defaults.conf

添加如下内容

    spark.yarn.historyServer.address=hadoop102:18080
    spark.history.ui.port=18080

2)重启 spark历史服务

[user_test@hadoop102 spark]$ sbin/stop-history-server.sh

[user_test@hadoop102 spark]$ sbin/start-history-server.sh

3)提交任务到 Yarn执行

[user_test@hadoop102 spark]$ bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode client ./examples/jars/spark-examples_2.11-2.1.1.jar 100

4)Web页面查看日志

WordCount案例

Spark Shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在 IDE中编制程序,然后打成 jar包,然后提交到集群,最常用的是创建一个 Maven项目,利用
Maven来管理 jar包的依赖。

编写 WordCount程序

注:在编写程序之前要在idea中配置好scala环境(下载scala配置环境——>在idea中安装scala插件(建议下载好插件包,选择从磁盘安装)——>新建maven项目之后右击选择add framework support——>选中scala——>根据自己情况配置)

1)创建一个Maven项目WordCount并导入依赖

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <finalName>WordCount</finalName>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>WordCount</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

2)编写代码

此处创建的是 scala object

package com.swenchao.spark

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

/**
 * @Author: Swenchao
 * @Date: 2020/9/22 下午 10:14
 * @Func: WordCount
 */
object WordCount {
    def main(args: Array[String]): Unit = {

        // local模式

        //创建conf对象
        // 设定计算框架运行(部署)环境
        // app id对应一个应用名称
        val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")

        // 创建上下文对象
        val sc = new SparkContext(config)

        // 读取文件,将文件内容按行读取
        // 路径查找位置默认从当前部署环境中查找
        // 如需从本地查找 file:///opt/module/spark/in
        val lines: RDD[String] = sc.textFile("in/word.txt")

        // 分解成单词
        val words: RDD[String] = lines.flatMap(_.split(" "))

        // 将单词数据进行结构转换
        val wordToOne: RDD[(String, Int)] = words.map((_, 1))

        // 分组聚合
        val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)

        // 打印结果
        val res = wordToSum.collect()
//        println(res)
        res.foreach(println)
    }

}

3)打包插件上传到集群

4)集群测试

[user_test@hadoop102 spark]$ bin/spark-submit --class com.swenchao.spark.WordCount WordCount-jar-with-dependencies.jar

屁屁工作顺利~
找到自己满意的新的sx


   转载规则


《Spark运行模式》 文超 采用 知识共享署名 4.0 国际许可协议 进行许可。
  目录